THEORY OF PLASMA ACCELERATION IN ELECTRIC
AND MAGNETIC FIELDS

0. V. Manukhina UDC 533.95

The problem of the acceleration of a plasma in crossed electric and magnetic fields under the
simplest physical conditions suitable for comparison with experiment is considered. Analyti-
cal expressions are obtained for the velocity of the electrons, the value of the resonance
acceleration zone, and the increment of the potential of the accelerated plasma.

Suppose a cold plasma is situated in a nonuniform magnetic fleld

B {1/,0Bx, /2BobY, By (1 — 82)}, 8 =|[dBy/dz| By
where By is the magnetic fleld strength at the beginning of the resonator with z =z;, & is the magnetic field
nonuniformity factor, and x, y, z are coordinates connected with the laboratory system of coordinates.
A high-frequency field
E,=Ei(y,z)cos(wt+¢q), E,=E, =0

is excited in the resonator, where E; is the amplitude, w is the frequency, and ¢ is the initial phase of
the electric field at the instant t =0 when the accelerating particles enter the resonator.

At a frequency w close to the Larmor frequency wc of rotation of an electron in a magnetic field (we =
eBz/me, where e and m are the charge and mass of the electron, respectively, By is the component of the
magnetic field along the z axis, and c is the velocity of light), resonance acceleration of the electron occurs
in the resonator, described by the equations

dvx _
dt
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where vx and vy are the components of the electron velocity along the x and y coordinates, and By is the
component of the magnetic field along the y axis. By changing to the complex variable r =x+1y, where i is
the square root of —1, Eq. (1) becomes

dv, /dt — oL, = — 7 cos (of -+ ) 2)
where vy =vx+ivy, ¥ = eE,/m.

Its solution
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enables us to determine the velocity and energy of an accelerated electron. The ions, because of their
inertia, do not experience resonance acceleration in the high~frequency electric field.

Under the actlon of the magnetic field gradient, the accelerated electrons begin to be drawn into the
region of weaker magnetic fields along the z axis. As the electrons move they attract ions with which they
combine as a result of the electric attractive forces. This effect becomes particularly large in a narrow
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region d close to resonance z =zp, as the Larmor frequency w¢ approaches the frequency of the electric
field w, which leads to resonance acceleration of the plasma.

The motion of the plasma along the z axis‘ can be considered using the usual equations for its compo-
nents, namely electrons and lons

“dy dv ’ '

=g OV v = — Bt 5 (vaBy — 0By @)
dv_; dv,,
— = T 0V va = B 5)

where E, is the field strength of the space charge which occurs as the accelerated electrons travel along
the z axis, vy and v,j are the velocity of the electrons and lons in the same direction, and M is the mass
of an ion.

Taking into account the dependence of By and By on the coordinates, we can transform the expression

§ i . 8 .-
L (V2B — VyeBy) = 5 {8y — Y = o (Re (—iir%)

by introducing the complex quantities r, dr/dt =7, and r*, which is conjugate to r,

d
;"' :—%EP—F—G-(ZE"—(RerImv,—ImrBev,) (6)

where wj=eB;/mc, and r and vy are found from Eq. (3).
Substituting the expression for Ep from Eq. (5) and assuming, in the case of a quasineutral plaéma,
n; = Ny == Ny, MUy == Mgl Uy == Vge = Uy

where ng and nj are the electron and ion densities of the plasma,respectively, we have

dv, m §y2 802+ 0+ (0 2 — 0?) (cos 2¢) M

dt m+M 2 (T80 (w2 — o
where (cos 2¢) is the average statistical value, connected with the phase ¢ at the instant the electron
enters the resonator. If, for example, we set it equal to unity (all the phases are equiprobable), we have

e _mor T (8)

For the steady-state case Ovy /0t =0, we obtain

m 8P ¢ (d—8jds
vl =g T%ZSW =62 — o2 9
[1]

whence we find the increase in plasma energies along the path from z =0 to any z < Zp, where z
coordinate of the exact equality of w and wq.

p is the

The space-charge field Ep for any z < zp can be found from expressions (5) and (8) using the equation
vgl=vy,

M dv, m 872 03 (1 — 82)
B = = TR A = (10)

The space-charge field is related to the space-charge distribution by Poisson's equation, and while
the plasma is being accelerated, the change in the field Ep along the x and y axes is much less than its
change along the z axis

dE, m_ 87a? 3 (I — b2)2 4+ w2

T T e 3 TeRd sy —ap = e (i — o) (11)

In the region z < Zp We can assume that the plasma remains essentially in a quasineutral state.
However, as z —~z,, we = w and, as can be seen from expressions (7)-(11), both the plasma velocity vy
and the space-charge field E, tendto infinity together with all the derivatives. The difference between
the ion and electron densities (11) also become infinite. But, in a practical plasma, this difference cannot
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exceed the absolute value of the charge density n,. For such a difference in density one cannot assume the

plasma to. be quasineutral, which means that expressions (7)-(11) cannot be applied to this region, in which
the space-charge field E, is in fact replaced by a tensor mass (m+M), as in the papers by Canobbio [1-3].

This is inadmissible for the resonance region in which the quasineutral. state of the plasma is disturbed.

Thus, in the resonance region d only the following set of equations can used:

dvz, (12)
Y A N YY
d . dE, .

& = ML B, —g- = d4me(m—n)

In system (12) the shape of the space-charge distribution curve (nj—ng) in the resonance region is un-
known. It is very difficult to obtain it experimentally, because of the small value of d and the high electron
velocities.

However, it can be approximated in fairly general form, for example, as follows:

(n; — 1) | ny = AL exp (1 — ak?

where £ =(zp—z)/(zp—zH), and it varies from 0 to 1 for zy= z = zp, where zp is the beginning of the reso-
nance region, l.e., the region in which considerable disturbance of the quasineutral state of the plasma
occurs, in which the difference between the electron and fon densities becomes comparable in value with the
density itself, and A and o are coefflcients. The results of the solution of Eq.(12), assuming the above
approximation, can be compared with experiment.

For the maximum difference between the densities (nj—ng)max =1, Which corresponds to the condi-
tion

Emax =1 /VEE or Zmax = [2p — (2p — 24)] /V?&
we obtain
AEexp(1 — aE)ax = 1

whence
A=V 2aexp(— 1)

When solving the system of equations for the ions

dv _; e v,
2 . _C. 2 __ 13
it~ M Eo, at (13)

dE, | dz = 4nen,AE exp (1 — ak?)

for E., with the above assumptions, we obtain an integral of the type

p’
E,=K{exp(—q)dg +C,

where C=0, since for large values of £ the space-charge field tends to zero. Thus
E, = 4qenyd exp (M, — a&?) /} 2a (14)
where d = zZp—zyis the value of the resonance zone.

The coefficient o and the value of the resonance zone d can be obtained from the conditions of the
boundary of the region d with z = zy, since the value of E; and its derivative dE, /dt defined by Eqs. (10),
(11), and (14) on the boundary of the zone must be identical. Consequently, for z =z, & =1,

mbyw? (1 — Bz,)

E,= 2 {wg® (1 — 82,)2 — @2 = 4nenyd exp (Y, — @) /]/2_0. (15)

dE,  meras 1300 (1 — 82,)% 4 ©7] — hsten, V Taexp (Yy — ) (16)

dz 2e [@o? (1 — 8z,)° — w?]®

Hence, taking into account the fact that

(1 — 8z,) = 0/w, 4 8d, 8d < w/w,
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we obtain the value of the resonance zone, and A¥ is the increment in the plasma energy within the reso-
nance zone

_m__ 17
d* = T 16mencowed 1
) Ip 1 1 i
o — 2 R, < ]
0¥ = — | Eds §4nenod exp< Lok ) =

:p—d

For comparison with experiment the dependence of the width of the resonance zone on the frequency,
the nonuniformity gradient of the magnetic field 6, and the amplitude of the high-frequency field, related to
the quantity v, areof interest. Experiments should enable a judgment to be made on the correctness of the
chosen model of plasma acceleration in the resonance zone, and on the part played by this zone in the over-
all energy increment of the plasma.
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